Quick Questions 11 Sampling and the Sampling Distribution of the Means

- I. Place the number of the appropriate formula next to the concept it defines.
 - A. The 99% confidence interval ___3__
 - B. Standard error of the mean ___1__
 - C. Used when the population variance is unknown and the sample is large ___5_
 - D. The 95% confidence interval ___4__
 - E. The mean of the sampling distribution of the means 2

1.	$\sigma_{\bar{x}} =$	$\frac{\sigma}{\sqrt{n}}$
----	----------------------	---------------------------

2.
$$\mu_{\bar{x}}$$

3.
$$\bar{x} \pm 2.58 \frac{\sigma}{\sqrt{n}}$$

4.
$$\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

5.
$$\bar{x} \pm 2.58 \frac{s}{\sqrt{n}}$$

- II. Answer the following true or false and fill in the blank questions.
 - A. The primary cause of sampling error is poor collection techniques. T
 - B. The standard error of the mean is halved when the sample size is doubled. T
 - C. A one-number estimate of the population mean is called a <u>point</u> estimate of the mean.
 - D. A range for a population parameter is called the <u>confidence</u> <u>interval</u>.
 - E. A <u>stratified</u> <u>random</u> <u>sample</u> may be more accurate than a simple random sample because a small diverse section of the population might not be chosen with a simple random sample.
- III. Calculate the 95% and 99% confidence intervals for the population mean given a sample of 36 resulted in a mean of 55 and a standard deviation of 18.

$$\overline{x} \pm Z \frac{S}{\sqrt{n}}$$

$$55 \pm 1.96 \frac{18}{\sqrt{36}}$$

$$55 \pm 1.96(3)$$

$$55 \pm 5.9$$

$$49.1 \leftrightarrow 60.9$$